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Abstract

The visual examination of paintings is traditionally performed by skilled art histo-

rians using their eyes. Recent advances in intelligent systems may support art his-

torians in determining the authenticity or date of creation of paintings. We propose

the brushstroke textons method that builds a codebook of textons, i.e., representative

patches, of a collection of paintings and represents paintings in terms of texton his-

tograms. In addition, the method visualizes the similarities between the histogram

representations of paintings by employing a recently proposed dimensionality reduc-

tion technique. The effectiveness of the brushstroke textons method is demonstrated

on a collection of digitized high-resolution reproductions of paintings by Van Gogh

and his contemporaries. The results show a clear separation of paintings created by

Van Gogh and those created by other painters. In addition, the period of creation is

faithfully reflected in the visualization. These promising results show that the tex-

ton brushstroke method, in particular when extended with color and global textural

features, offers a new tool for art historians in support of their study of paintings.
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1 Introduction

Digital analysis techniques are entering the domain of art historians. The development of advanced

computer vision algorithms and the availability of powerful computers to run these algorithms in rea-

sonable time have opened up a wide range of new possibilities for the computer-supported examination

of paintings. Currently, artist identification is performed by art experts that have considerable experience

with the works of one or more painters. Although experts have a variety of techniques at their disposal –

such as canvas weave count, dendrochronological analysis of the wood of the frame, chemical analysis

of the pigments, and x-radiography of the painting or support – visual assessment of the painting is still

one of their most important tools. An important cue in identifying the artist of a painting is the “hand-

writing” of the painter: the brushstrokes and brushstroke configurations that reveal the painter’s style.

Despite the variations in form and appearance of a painter’s brushstrokes, the artist’s handwriting can

be recognized by skilled art experts, although it is hard to explicate to laymen what the characteristic

elements of a painter’s handwriting are. Intelligent image analysis and machine learning techniques that

are sensitive to the brushstroke texture may support the art expert in detecting and visualizing painter-

specific brushstrokes, and provide objective evidence for the attribution of a painting to an artist.

Previous work on artist identification and painting analysis focused on the assessment of color use in

(Van Gogh) paintings using filter-based approaches [1], on capturing statistical information from seg-

mented or outlined brushstrokes [11], and on wavelet analysis of the paintings [4]. In this paper, we

present a new method – the brushstroke textons method – that builds an effective representation of the

brushwork of paintings and visualizes the representations by means of a novel dimensionality reduction

technique. We show the feasibility of the approach by applying it to a collection of paintings by Van

Gogh and his contemporaries. Our results underline the relevance of intelligent image analysis and

machine learning techniques for the cultural heritage domain.

2 The Brushstroke Textons Method

Given that the segmentation of individual brushstrokes from a painting is unfeasible [4], from a image

analysis perspective, brushstroke analysis corresponds to the analysis of the texture of the painting. The

wildly overlapping brushstrokes form a textural cue of the painter’s handwriting. Typically, texture anal-

ysis is performed by applying a bank of filters that respond to intensity transitions in the input image.

Motivated by the characteristics of the primate visual system, the filters in the bank are generally se-

lected in such a way that they respond to spatial frequencies at various scales and orientations [9]. Such

filter-based approaches have long been considered to be the supreme method for texture analysis. Re-

cently, however, the supremacy of filter-based approaches in texture analysis has been questioned [17].

One of the main arguments against the use of filter-based approaches is that they employ filters with a

Gaussian envelope, as a result of which the filters smooth the image before they measure the presence of

(oriented) high spatial frequencies. The smoothing is necessary to remove noise that masks image gradi-

ents. Unfortunately, the smoothing may distort or remove pivotal information of relevance to the texture

analysis task. In the case of brushstroke texture, such details may correspond to individual hairs in the

brush used by the painter that contain valuable cues for artist identification. The smoothing problem
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finding prototypes texton codebook

Figure 1: Illustration of the construction of a texton codebook. Patches are collected from random

locations in each painting. Subsequently, prototypical brushstroke textons are identified by a clustering

method and stored in a texton codebook.

may be resolved by employing filters with a small support such as in complex wavelet transforms [5],

or by employing pixel-based texture representations such as texton histograms. In the brushstroke tex-

tons method, we combine the texton histogram approach of Varma and Zisserman [17] with a recently

proposed visualization method based on dimensionality reduction [14]. In the following subsections,

we separately discuss the texton histogram stage and the visualization stage of the brushstroke textons

method.

2.1 Texton Histograms

In the first stage of the brushstroke textons method, paintings are represented in terms of texton his-

tograms. A texton is the fundamental building block of texture (just like a grapheme is the fundamental

building block of handwriting): we can view upon brushstroke texture as a superposition of brushstroke

textons1. The texton histogram approach entails the use of normalized pixel-based texture representa-

tions and is, therefore, not hampered by the smoothing problem. In texton-based modeling of paintings,

we first identify the prototypical brushstroke textons of the complete collection of digital reproductions

of paintings, and store those in a texton codebook. The artist can be viewed upon as a probabilistic

generator of textons that generates textons according to a painter-specific distribution over the textons

in the codebook. For each painting, the texton distribution is measured by means of a texton histogram.

We construct the texton codebook as follows. We select 5, 000 square image patches from random lo-

cations in each painting. In the collection of patches that were selected from all paintings, prototypical

patches are identified by applying a clustering algorithm such as k-means clustering, Kohonen maps [7],

or the recently proposed affinity propagation [3]. The cluster centers or exemplars obtained from the

clustering algorithm form the texton codebook. The construction of the texton codebook is illustrated

in Figure 1.

Once the codebook is defined, each painting can be represented by means of a texton histogram. The

height of each bin in the texton histogram for a painting represents the frequency of occurrence of the

associated codebook texton in the painting. The histogram is created using a sliding window that moves

over all locations in the painting. At each location, the contents of the sliding window are compared

to all codebook textons. The most similar codebook texton (e.g., in the Euclidean sense) is defined as

the matching texton. The texton histograms are normalized to sum up to 1 in order to correct for the

1Please note that although a texton is a fundamental building block of texture, it is not identical to a brushstroke: the

fundamental building block of paintings.
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Figure 2: Illustration of the construction of a texton histogram. A window is slid over the texture

image, and the histogram bin associated with the most similar codebook texton is incremented at each

spatial location. After normalization, the texton histogram represents the relative number of times that

a codebook texton appears in the painting.

potential differences in size of the paintings. The extraction of texton histograms from a painting is

illustrated in Figure 2.

In art experts’ visual analysis of a painting, a variety of different scales is usually examined by the

experts. The examined scales range from a coarse level (such as the depicted scene, the use of comple-

mentary colors, etc.) to a very fine level (such as the size of employed brushes, the thickness of brush

hairs, etc.). It thus seems likely that a computer analysis of paintings should examine a range of scales

as well. Texton-based texture modeling readily facilitates such a multi-scale approach: the computation

of texton histograms can be performed using textons of different sizes, and the resulting histograms can

be combined into a multi-dimensional feature vector. In our experiments with the brushstroke texture

method, we extract texton histograms for six different scales (i.e., texton sizes).

2.2 Visualization

The second stage of the brushstroke texton method is the visualization stage. Once relevant textural

information is extracted from the paintings in the form of a texton histogram, a method is needed to

visualize the similarity of textures or paintings to the art historian. The histograms constitute vectors of

a high dimensionality (the dimensionality is equal to the number of textons in the codebook). Dimen-

sionality reduction techniques transform the high-dimensional texton histograms into points in a two or

three-dimensional space while preserving as much of the structure in the data as possible, as a result

of which similarities between texton histograms can be visualized in terms of distances between points

in a scatterplot. The quality of the dimensionality-reduced visualization depends on the quality of the

dimensionality reduction technique. Dimensionality reduction is traditionally often performed using

Principal Components Analysis (PCA), however, this technique is not very suitable for our purposes for

two main reasons: (1) PCA is hampered by its linear nature, whereas the high-dimensional datapoints

may form a nonlinear manifold, and (2) PCA tends to ignore the local structure in the high-dimensional

datapoints by focusing on the preservation of the global structure of the data. Recently, several di-

mensionality reduction techniques have been developed that focus on retaining the local structure of

high-dimensional datapoints that form a nonlinear manifold, e.g., Isomap [13], Local Linear Embed-

ding [10], and diffusion maps [8]. We have reviewed these techniques [15] and found them to suffer

from serious shortcomings that prohibit successful visualization of real-world data. Therefore, we opt
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Figure 3: Illustration of the construction of a t-SNE map. The points in the low-dimensional map are

arranged in such a way that the conditional probabilities in the map qj|i are similar to the conditional

probabilities in the data pj|i.

to use a novel dimensionality reduction technique, called t-Distributed Stochastic Neighbor Embedding

(t-SNE) [14], that is much better at preserving the local structure of the high-dimensional data in the

visualization.

t-SNE starts by converting the pairwise distances between the high-dimensional datapoints (i.e., the tex-

ton histograms) to conditional probabilities by centering a Gaussian over each point and measuring the

density of all other points under the Gaussian. Mathematically, the pairwise similarity pj|i between the

high-dimensional datapoints xi and xj is given by the conditional probability

pj|i =
exp

(

−‖xi − xj‖
2/2σ2

i

)

∑

k 6=i exp
(

−‖xi − xk‖2/2σ2

i

) , (1)

where σi is set in such a way as to give each Gaussian the same entropy or perplexity, and pi|i is

set to 0. Denoting the low-dimensional counterparts of xi and xj by yi and yj , we define similar

conditional probabilites between the points in the low-dimensional space. In order to address a problem

known as the crowding problem [14], t-SNE does not employ a Gaussian in the low-dimensional space,

but a Cauchy distribution (which is a special case of a Student-t distribution, hence the name t-SNE).

Mathematically, the pairwise similarity qj|i between the low-dimensional datapoints yi and yj is defined

to be

qj|i =

(

1 + ‖yi − yj‖
2
)−1

∑

k 6=i (1 + ‖yi − yk‖2)−1
, (2)

where again, we set qi|i to 0. The locations of the low-dimensional datapoints yi are determined by min-

imizing the sum of the Kullback-Leibler divergences between the conditional probability distributions

Pi and Qi, i.e., by minimizing

C =
∑

i

KL(Pi||Qi) =
∑

i6=j

pj|i log
pj|i

qj|i
, (3)

with respect to the coordinates yi of the points in the low-dimensional space using a gradient descent

method2. t-SNE has been shown to perform very strong in the visualization of a variety of real-world

datasets (see [14]). The construction of a t-SNE map is illustrated in Figure 3.

3 Evaluating the Brushstroke Textons Method

The texton histograms and the t-SNE dimensionality reduction algorithm constitute the brushstroke

textons method which will be put to the test on a collection of paintings by Van Gogh and his contem-

poraries.

2Please note that minimizing this Kullback-Leibler divergence is identical to maximizing the log-likelihood of the data or

to maximizing the cross-entropy of the distributions Pi and Qi.

4



Figure 4: An example of one of the texton codebooks. This codebook was constructed using affinity

propagation on textons of size 35× 35 pixels.

3.1 Experimental Setup

We apply the approach on a recently released dataset of 117 high-resolution digital reproductions of

paintings. The dataset contains high-resolution digital 48-bit color reproductions of 117 paintings at-

tributed to Van Gogh and related painters, which we transformed to 8-bit grayscale images for our

experiments. The reproductions were created using ektachromes made available by the Van Gogh Mu-

seum and the Kröller-Müller Museum (both in The Netherlands). The paintings were normalized in

such a way that a square inch of the painting is represented by 196.3 × 196.3 pixels. Of the 117 paint-

ings, 13 are known not to be painted by Van Gogh and 6 are of disputed authorship. The remaining

98 paintings are generally accepted as authentic Van Gogh paintings. Each painting is labeled with its

authenticity (Van Gogh, non Van Gogh, or disputed), and all authentic Van Gogh paintings are labeled

by their creation date (ranging from 1884 to 1890) and creation place.

In order to evaluate the brushstroke texton method, we extracted texton histograms for textons of six

different sizes: 25×25, 35×35, 45×45, 55×55, 65×65, and 75×75 pixels. The six texton codebooks

employed in the experiment were constructed using affinity propagation, and contained approximately

500 textons each. Figure 4 shows one of the constructed texton codebooks. Altogether, the six texton

histograms form feature vectors with approximately 3, 000 dimensions, which were first reduced to 50
dimensions using PCA. Subsequently, we use t-SNE to reduce the dimensionality of the resulting fea-

ture vectors to 2 dimensions. In the high-dimensional space, we set the variance parameters σi in such

a way that the conditional distributions Pi had a perplexity of 10 (or equivalently, a Shannon entropy of

log2(10)).

3.2 Results

In Figure 5, we present one of the visualizations obtained with the brushstroke texton method. Each

dot represents a single texton histogram (i.e., a single painting). The green dots represent Van Gogh’s

paintings, whereas the red dots those that are established non Van Gogh paintings. Paintings whose
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Figure 5: Visualization of the dataset of Van Gogh, non Van Gogh, and disputed Van Gogh paintings.

The points in the scatter plot are labeled according to the authenticity of the paintings.

attribution is disputed are indicated by blue dots. The visualization reveals that all-but-two non Van

Gogh paintings are depicted in the periphery of the visualization. Apparently, the brushstroke texture

in these paintings is appropriately captured by the texture histograms and offers an effective, albeit

crude, indication of textural differences and similarities. The two paintings that do not stand out in the

visualization are the so-called Wacker forgery and a painting by Gauguin. The Wacker forgery is one

of a series of forgeries, which fooled renowned Van Gogh experts for years. The Wacker forgery in

our collection is quite easy to discriminate from the genuine Van Gogh paintings using global texture

analysis [4]: the Wacker forgery contains more high spatial frequencies than the genuine Van Gogh’s.

Presumably, the local textons do not capture these global statistics. The same may apply to the painting

created by Gauguin. Further analysis is needed to establish this. Despite these two anomalies, the

visualization places 11 of the 13 non-Van Gogh paintings in the periphery of the visualization. This

is quite a remarkable result, given that the brushstroke textons method is completely data-driven. The

visualizations obtained with the brushstroke texton method also suggest attributions of the disputed

paintings: some are located in the middle of a cluster of genuine Van Gogh paintings, whereas others

are located close to the non Van Gogh paintings in the periphery.

Figure 6 shows a visualization obtained by applying the brushstroke textons method to established Van

Gogh paintings only. The dots are colored according to the two main periods in Van Gogh’s oeuvre: the

Dutch period (1883-1886; red dots) and the French period (1886-1890; blue dots). The visualization

shows a separation between the paintings from both periods (all Dutch paintings are captured in one of

three small clusters), and thus captures diagnostic textural elements of the development of Van Gogh’s

paintings style from his originally sober style to his later (and more famous) lively impressionistic

paintings. Art historians may use the brushstroke texton method to create visualisations of subsets of

paintings to examine more subtle textural differences.

4 Discussion

The results presented above illustrate the potential of our method to support art historians in their analy-

sis of paintings. Of course, the brushstroke textons method only offers an initial crude characterization
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Figure 6: Visualization of the authentic Van Gogh paintings in the dataset. The points in the scatterplot

are labeled according to the period in which they are painted.

of paintings. A complete approach to computer-assisted artist identification should integrate more in-

formation than just the local texture characteristics that our texton histograms capture. For instance, the

interaction between brushstrokes should be captured, prompting the use of textural features that are less

local than our texton features, such as wavelet features [4] or filter bank statistics such as those proposed

in [9]. Moreover, the color use of Van Gogh (and more specifically, the use of complementary colors)

should be captured in global painting features such as those proposed in [1]. Our texton-based approach

may also be adpated to employ color information using one of the schemes proposed in [2].

The development of an approach that combines a variety of features is the most viable way to obtain

clear separation between paintings that are created by different artists based on the visual assessment of

the paintings. Typically, the numerical results obtained with applying the brushstroke textons method

and other image analysis methods on digital reproductions of paintings will complement the results

obtained with other types of analysis (such as provenance analysis, canvas weave count [6], paper anal-

ysis [16], analysis of lighting structure [12], and dendrochronological measurements).

In order to further improve the brushstroke textons method, more work is needed in order to present the

results of the image analysis in more intuitive ways to the art expert. The true value for art historians

is in the visualization and understanding of the visual characteristics (e.g., textons or configurations of

textons) that give rise to the mapping. We envisage the future development of software that allows art

experts to map and visualize subsets of paintings and selected regions of paintings. In that respect, the

software incorporating the brushstroke texton method will become one of the many tools at the disposal

of the art historian.

5 Concluding remarks

The brushstroke texton method, a novel computational method for artist identification, was presented

that analyzes the brushstrokes in paintings by means of texton-based texture models, and visualizes the

features obtained using t-SNE. The results indicate the sensitivity of the method to the textural cues

underlying the authorship of a painting. An interactive version of the method will allow art experts to
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establish a quantitative assessment of the authenticity or date of creation of paintings. The authors hope

to have made a good first step towards the development of systems that support art historians.
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